首页> 外文OA文献 >Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects
【2h】

Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

机译:金刚石束损失中的严重信号损失以高粒子率监测   通过电荷俘获辐射引起的缺陷的环境

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The beam condition monitoring leakage (BCML) system is a beam monitoringdevice in the compact muon solenoid (CMS) experiment at the large hadroncollider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors arepositioned in rings around the beam pipe. Here, high particle rates occur fromthe colliding beams scattering particles outside the beam pipe. These particlescause defects, which act as traps for the ionization, thus reducing the chargecollection efficiency (CCE). However, the loss in CCE was much more severe thanexpected from low rate laboratory measurements and simulations, especially insingle-crystalline (sCVD) diamonds, which have a low initial concentration ofdefects. The reason why in real experiments the CCE is much worse than inlaboratory experiments is related to the ionization rate. At high particlerates the trapping rate of the ionization is so high compared with thedetrapping rate, that space charge builds up. This space charge reduces locallythe internal electric field, which in turn increases the trapping rate andrecombination and hence reduces the CCE in a strongly non-linear way. A diamondirradiation campaign was started to investigate the rate dependent electricalfield deformation with respect to the radiation damage. Besides the electricalfield measurements via the Transient Current Technique (TCT), the CCE wasmeasured. The experimental results were used to create an effective deep trapmodel that takes the radiation damage into account. Using this trap model therate dependent electrical field deformation and the CCE were simulated with thesoftware SILVACO TCAD. The simulation, tuned to rate dependent measurementsfrom a strong radioactive source, was able to predict the non-linear decreaseof the CCE in the harsh environment of the LHC, where the particle rate was afactor 30 higher.
机译:束状态监视泄漏(BCML)系统是大型强子对撞机(LHC)的紧凑型μ子螺线管(CMS)实验中的束监视设备。作为探测器,将32个多晶(pCVD)钻石传感器放置在束管周围的环中。在此,由于碰撞光束将粒子散射到束管外部而产生高粒子率。这些粒子会导致缺陷,这些缺陷会充当电离的陷阱,从而降低电荷收集效率(CCE)。但是,CCE的损失要比低速率实验室测量和模拟所预期的要严重得多,尤其是初始缺陷浓度低的单晶(sCVD)钻石。在实际实验中,CCE比实验室实验差得多的原因与电离速率有关。在高颗粒度下,电离的俘获率与去俘获率相比是如此之高,以至于空间电荷会累积。该空间电荷局部地减小了内部电场,这反过来又增加了俘获率和复合,因此以强烈的非线性方式减小了CCE。开始了金刚石辐射运动,以研究与辐射损伤有关的速率相关的电场变形。除了通过瞬态电流技术(TCT)进行电场测量外,还测量了CCE。实验结果被用来创建一个有效的深陷阱模型,该模型考虑了辐射损伤。使用该陷阱模型,通过软件SILVACO TCAD模拟了速率相关的电场变形和CCE。通过对强放射性源的速率相关测量进行调整,该模拟能够预测LHC恶劣环境中CCE的非线性下降,在该环境中,粒子速率要高30倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号